

Formulae

Unit 1: Collection of Data

Petersen Capture-Recapture (Higher only)

$$N = \frac{Mn}{m}$$

N = number in the population

M =size of first sample

n =size of second sample

m = number marked in second sample

Stratified Sampling

Number selected in stratum = $\frac{\text{Stratum size}}{\text{Population size}} \times \text{sample size}$

Unit 2: Processing, Representing and Analysing Data

Pie Chart: angle of sector

Sector angle =
$$\frac{x}{\text{total}} \times 360^{\circ}$$

x =frequency of sector

total = total frequency

Comparative Pie Charts

(Higher Only)

$$r_2 = r_1 imes \sqrt{\frac{F_1}{F_2}}$$

r = radius

F = frequency

Histograms

Frequency density = $\frac{\text{frequency}}{\text{class width}}$

Frequency = frequency density \times class width

Unit 3: Summarising Data

Median

Discrete Data: Position of Median = $\frac{1}{2}(n+1)th$

n = number of data values

Grouped Data: Position of Median = $\frac{1}{2}n th$

Mean: Discrete Data

$$\bar{x} = \frac{\sum x}{n}$$

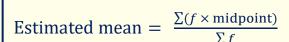
 \bar{x} = mean

$$\Sigma$$
 = sum of

x = data values

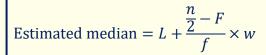
n = number of data values

Mean: Frequency Table (not grouped)


 \bar{x} = mean

$$\sum$$
 = sum of

 $x = data \ values$


f = *frequency*

Mean: Grouped Data

$$\sum$$
 = sum of

Median: Interpolation

L = the lower boundary of class containing the median

n = total number of data values

F = cumulative frequency of the intervals before class containing the median

f = frequency of the class containing the median

w =width of the class containing the median

....

Unit 3: Summarising Data

Geometric Mean (Higher Only)

Geometric mean = $\sqrt[n]{\text{value}_1 \times \text{value}_2 \times ... \times \text{value}_n}$

where n is the total number of values

Weighted Mean (Higher Only)

Weighted mean =
$$\frac{\sum (\text{value} \times \text{weight})}{\sum \text{weights}}$$

Range

Range = highest value - lowest value

Quartiles

Interquartile range:

Upper quartile - Lower quartile

Discrete data:

Lower quartile position =
$$\frac{1}{4}(n+1)th$$
 Upper quartile position = $\frac{3}{4}(n+1)th$

Upper quartile position =
$$\frac{3}{4}(n+1)th$$

Grouped data:

Lower quartile position =
$$\frac{1}{4}n th$$

Upper quartile position =
$$\frac{3}{4}n th$$

Interpercentile Range (Higher Only)

Interpercentile range = larger percentile – smaller percentile

Interdecile Range (Higher Only)

Interdecile range = larger decile - smaller decile

Unit 3: Summarising Data

Standard Deviation (Higher Only)

Standard deviation =
$$\sqrt{\frac{1}{n}\sum (x - \bar{x})^2}$$
 OR

$$\sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$

n =the number of data values

$$\Sigma = \operatorname{sum} \operatorname{of}$$

$$x = data values$$

$$\bar{x} = \text{mean}$$

Standard Deviation: data in a frequency table (Higher Only)

Standard deviation =
$$\sqrt{\frac{\sum f(x - \bar{x})^2}{\sum f}}$$
 OR

$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

$$\Sigma = \text{sum of}$$

$$x = data values$$

$$\bar{x}$$
 = mean

Standard Deviation: grouped data (Higher Only)

Standard deviation =
$$\sqrt{\frac{\sum ft^2}{\sum f} - \left(\frac{\sum ft}{\sum f}\right)^2}$$

$$\Sigma = \operatorname{sum} \operatorname{of}$$

t is equivalent to x for data values but could be any letter e.g. t for time or h for height

Calculating Outliers (Higher Only)

Small outlier is
$$<$$
 LQ $-$ 1.5 \times IQR

Large outlier is $> UQ + 1.5 \times IQR$

Outlier is more than 3 standard deviations from the mean

Skewness (Higher Only)

$$Skew = \frac{3(mean - median)}{standard deviation}$$

Unit 4: Scatter Diagrams & Correlation

Equation of line of best fit

$$y = ax + b$$

$$a = gradient$$

$$b = y$$
-intercept

Spearman's Rank Correlation Coefficient (Higher Only)

$$r_{\rm S} = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$$

d is the difference in ranks

n is the number of values in each set

Unit 5: Time Series Analysis

Seasonal Variation

Seasonal variation = actual value - trend value

Predicted Value

Predicted value = trend line value – estimated mean seasonal variation

Unit 6: Probability

Theoretical or Expected Probability

$$P(event) = \frac{number of favourable outcomes}{total number of outcomes}$$

Expected Frequency

Expected frequency of event $A = P(A) \times number of trials$

Experimental or Estimated Probability

Estimated probability = $\frac{\text{number of trials with favourable outcome}}{\text{total number of trials}}$

Absolute Risk

Risk of event = $\frac{\text{number of trials in which event happens}}{\text{total number of trials}}$

Relative Risk

Relative risk for a group = $\frac{\text{risk for those in the group}}{\text{risk for those not in the group}}$

Addition (Or) Rule for Mutually Exclusive Events

$$P(A \text{ or } B) = P(A) + P(B)$$

Unit 6: Probability

General Addition Law for Non-Mutually Exclusive Events

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Multiplication (And) Law for Independent Events

$$P(A \text{ and } B) = P(A) \times P(B)$$

Formula can be extended to 3, 4 or more events

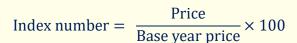
$$P(A \text{ and } B \text{ and } C) = P(A) \times P(B) \times P(C)$$

Conditional Probability

$$P(B|A) = \frac{P(A \text{ and } B)}{P(A)}$$

$$P(B|A) \times P(A) = P(A \text{ and } B)$$

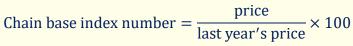
For Independent events:


$$P(B|A) = P(B)$$

$$P(A|B) = P(A)$$

Unit 7: Index Numbers

Index Numbers



Weighted Index Numbers (Higher Only)

current weighted mean price Weighted index number = base year weighted mean price

Chain Base Index Numbers (Higher Only)

Crude Rates of Change

Number of births/deaths/other $\times 1000$ Total population

Standard Population (Higher Only)

 $\frac{\text{Number in age group}}{\text{Total population}} \times 1000$ Standard Population = -

Standardised Rate (Higher Only)

Standardardised Rate = $\frac{\text{Crude rate}}{1000} \times \text{standard population}$

Unit 8: Probability Distributions

Binomial Distribution Mean (Higher Only)

Mean of binomial distribution B(n, p) = np

n is the number of trials p is the probability of success

Normal Distribution Standardised Score (Higher Only)

Number of standard deviations from mean = $\frac{\text{value} - \text{mean}}{\text{standard deviation}}$

